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THE INVISCID STABILITY OF SUPERSONIC

FLOW PAST A SHARP CONE

Peter W. Duck 1 and Stephen J. Shaw

Department of Mathematics

University of Manchester

ABSTRACT

In this paper we consider the laminar boundary layer which forms on a sharp cone in a

supersonic freestream, where lateral curvature plays a key role in the physics of the problem,_

This flow is then analysed from the point of view of linear, temporal, inviscid stability.

Indeed, the basic, non-axisymmetric disturbance equations are derived for general flows of

this class, and a so called "triply generalised;' inflexion condition is found for the existence of

"subsonic" neutral modes of instability. This condition is analogous to the well-known gen-

eralised inflexion condition found in planar flows, although in the present case the condition

depends on both axial and aximuthal wavenumbers.

Extensive numerical results are presented for the stability problem at a freestream Mach

number of 3.8, for a range of streamwise locations. These results reveal that a new mode of

instability may occur, peculiar to flows of this type involving lateral curvature.

Additionally, asymptotic analyses valid close to the tip of the cone / far downstream of

the cone are presented, and these give a partial (asymptotic) description of this additional

mode of instability.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the second author was in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. Introduction and motivation

It is well known that unlike many of their incompressible counterparts,

supersonic boundary layers are generally susceptible to inviscid forms of

instability; this comment, in particular, applies to Blasius-type boundary

layers. The paper which first tackled the problem of stability of

supersonic boundary layers, from any kind of rigorous mathematical

standpoint was that of Lees and Lin (1946), who presented some extremely

important results on the problem, including the importance of the quantity

L
dy* [P* dy*J (where u* denotes velocity tangential to the surface

y*

the normal to the surface, and p* the fluid density), which plays the

same role as that of an inflexion point in incompressible flows. In

particular at the point where the above expression is zero (y* = Yo , say),

then a neutral mode exists with wavespeed u*(Yo*) (although see the

restriction (4.21) later in this paper). Lees and Lin also showed how

viscosity played a similar role at a critical layer as in analogous

incompressible flow situations. This two-dimensional work was later

extended to three-dimensions by Reshotko (1962).

The development of digital computers enabled accurate numerical

computations of the problem to be made. One of the earliest was that of

Brown (1962), and this was followed by a number of studies by Mack

(1963, 1964, 1965a,b, 1969, 1984, 1987a), both of an inviscid (large

Reynolds number) and viscous (finite Reynolds number) nature. These

computations revealed a further distinction between supersonic and

incompressible flows, namely that in the latter case an infinite sequence of

modes is possible. These are important, because generally it is one of

these "higher" modes that exhibits the largest growth rate according to

inviscid, linear stability theory.

In spite of their great practical importance, flows of this type, but

involving lateral curvature have received scanty attention over the years.
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Duck and llall (1989a) showed how in supersonic flows, _urvature intcracting

with viscosity could provoke additional instabilities (axisymmctric in

form), providcd the body radius was below some critical value. Duck and

Hull (1989b) then went on to show how a similar effect occured with

non-axisymmetric modes (which, in fact, turn out to be generally more

unstable than corresponding axisymmetric modes).

Recently, Duck (1989) (hereafter referred to as I) has shown the

influence of curvature on the axisyrrunetricinviscid stability of supersonic

boundary layers, in particular those that form on thin straight circular

cylinders. It was found that curvature has a profoundly stabilising effect

on these modes. Interestingly, it was shown how curvature altered the

generalised inflexion condition described above, and a modified (or "doubly

generalised") inflexion condition, involving the radius of curvature was

derived.

In the present paper we extend the work of I to non-axisy-:nmetric-

disturbances which, indeed, turn out to be more important than axisymmetric

disturbances considered previously. Further, rather than studying/applying

our techniques to the thin straight circular cylinder, we consider a

somewhat more practical configuration, namely that of a sharp coqe.

To (considerably) facilitate already lengthy and complex computations,

following I we assume that the tip of the cone has a finite radius, and

that the associated boundary layer on the cone surface is planar at the cone

tip. (We expect that far downstream the flow will become planar once again,

having utilised the Mangler, 1948, transformation.) Following previous

studies in this area, we also ignore the presence of any shocks.

Mack (1987b) has performed some computations for the stability of the

flow over a cone in supersonic flow, at finite Reynolds numbers, but found

little difference with corresponding planar results. Here, we deliberately

allow curvature to occur throughout the study, both in the equations

governing the basic flow, and in the disturbance equations.
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A few preliminary numerical results of this study have bccn presented by

Duck (1990). Here, wc present additional numerical results, and also a

number of important asymptotic results related to these calculations.

2. Equations of motion and state

The general layout of the problem is shown in Fig. I. The z axis

lies along the cone axis, r* denotes the radial coordinate, and 0 the

azimuthal coordinate. The velocity vector Z* has components Vl*, v2*

and v3* in the r*, 0 and z* directions respectively. Although we

shall be concerned with a basic flow which is independent of 0 (and with

v 2 = 0), when we go on to consider the stability of the flow, we shall be

concerned with non-axisyrnmetric disturbances.

In the cylindrical polar coordinate system as defined above, the full

equations of continuity, momentum and energy take on the following forms

(Thompson 1972)

D_t_._ ,) 1 _ •+_(p* Vl +_(p*v2)_r r

, • pVl :0,
+ _,(p v3 ) +

p, [DVl* (v2*) 2 ] _)P* c3_* *

;gZ**
I _Zr*O+_+7 D0,

+ Zr*r* - _0o
r

Dt T r r _0 _r

(2.1)

(2.2)

+ _ +
r D0 3z

+ 2 Zr*e

r

(2.3)



DtT " dz-z--_+ +-;dr* r 30

+_E.*-*

p, D
(Cp T*)

Dp* F* I c_ K'r* _T*

1 _) K* _T*

(2.4)

Here p* is the density of the fluid.

specific heat (at constant pressure),

p the pressure, Cp the

and K* the coefficient of heat

conduction. The Eulerian operator is defined as

D _ * _ ._ * a
D-'7- St* + vl _r-7 + r --+80 v3 (2.s)

and the viscous stress components, assuming Newtonian flow are defined

to be

Er*r* = 2g* _.--_*+ _* V.v* , (2.6)
dr ~

÷ yr.,_  27;

Ez*Z* = 2B* _-_+ X* V.v* ,
_z ~

(2.8)

Yr,O.gOr, .l.t, [l_vl*+ r, _ [v._*] ] (2.9)

8z _0 '
(2.10)

_Vl, ]Ez*r* = Er*z* = g* _ + (2.11)

The dispersion function F* in (2.5) is given by



_2..F_ = 21.1.D *r • + D 8 + °z z

+ 2 D2"8 + 2 D2*O + 2 D2*r *]

+ (I* - 2 _*) (V.v*) 2. (2.12)

Here the 'D' terms are the components of the" rate-of.deformation tensor.

for example

DO0 = 7 o_O r

1 +'-'_
Dz*0 = "_ dz r /)0

(2.14)

The coefficients _* and X* above denote the first coefficient of

viscosity and bulk viscosity respectively (which are expected to be

functions of temperature).

The equation of state is taken to be that pertaining to a perfect gas,

i °e.

* p* R* T* (2.15)p =

where R* is the gas constant.

With reference to Fig. 1, the surface of the cone is taken to lie

along r* = a* + t I z*, z* > 0, (later, important assumptions regarding

the size of the slope parameter will be made), and so on this surface we

requ i re

v 1 = v2 = v 3 = 0. (2.16)

If the surface of the cone is insulated then the following additional

boundary condition must be imposed

OT*

= 0 , (2.17)

(where n* denotes an outwards normal to the wall). In the case of heated/



cooled walls, then the condition

T = T (2.18)w

must be imposed at the surface.

Conditions remain to bc spccificd at z* = O; for this we follow I

(precisely) by assuming that the boundary layer at this location has zero

thickness, enabiing planar conditions to be imposed at this position.

Assuming the cone to be slender, then the far-field conditions are taken to

be uniform, with

v I =v 2 = 0

v3* = U.*

T _ = T_ _ ,

(2.19)

(2.20)

(2.21)

(Indeed, in the case of non-slender cones, if the shock wave is attached,

downstream of the shock the external flow is irrotational, and there

is also a constant slip velocity at the surface of the cone.) We next go on

to derive the basic (boundary-layer) flow on the surface of the cone,

assuming curvature plays a key role in the physics of the problem.

3. The boundary layer flow

We define our Reynolds number on the tip radius of the cone, a*, as

follows

Re = U.* a* p_*

I1.,
(3.1)

and this will be taken to be large throughout this paper. As noted

previously, the basic flow !s taken to be independent of 0, and has no

azimuthal velocity component (i.e. v2* = 9).

It is now convenient to introduce non-dimensional parameters as follows

(v 1, v 3. rl Z, T, p, g) =

"'" " SIv 3 r z T* p
..'7-_ , _ , , --"_ , '_ ,
U. a _ T. p.

(3.2)
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A key element of this paper (as in

terms in the governing equations to leading order.

case, then we must have that

_'1 = Re" i Z

where _ = 0(1), (3.3)

implying a .slender cone.

The leading order governing equations may then be written (assuming

Re _ _)

3

_p
_3-F=0

Vl + v3 = T _ rla

o3T _3T _. i.tT(y.1 ) M**2 [_:212Vl _ + v3 _J¥

where the result

has been used, a

+ T ;3"7

I) is the inclusion of curvature

If this is'to be the

(which is taken to be a constant in this paper), y denoting the ratio of

specific heats, and M** is the freestream Mach number, namely

= U.* / (y R* T.*)½ (3.10)

The boundary conditions to be applied to this system are

vI =-v3 = 0 on r = I + _z ,

v 3 ---* 1, T _ 1 as r _ ** , (3.11)

together with a wall temperature condition; in the, case of insulated wails,

1
p = - (3.8)

T

is the Prandtl number, namely

It** Cp
a - K_ (3.9)

(3.5)

(3.6)

(3.7)

(3.4)



([o leading order)

_T
= 0 on r = i + _z , (3.12)

whilst in the case of heated/cooled surfaces

T = T w on r = 1 + _z . (3.13)

To close the problem, a viscosity/temperature law is required. For the

purposes of this paper we take the linear Chapman law (Stewartson 1964),

namely

= CT (3.1:4)

where C is taken to be constant (although as noted in I, there would be

no conceptual difficulties in taking more complex variations of viscosity

with temperature).

If we write

vI = C vI ,

-l
z=C _

l

= c)., (3.15)

whilst retaining other terms, then the system (3.4) (3.7) becomes

+-_+ =0r

_p
_t7 =0 ,

_v3 3v3 T 3 [ 3v3"]91 _T-'+v3 2_"=T_" ? rTT{-- j ,

,_T _T= T2 ('t-l) ._2 [°v3] 2
_I _ + v3 _ [_--]

+7 --3T '

whilst the wall boundary conditions are to bc applied on

r 1+).2.

(3.16)

(3.17)

(3.18)

(3.19)



As described prcviously we assume planar conditions prevail at z = O,

where the boundary layer is taken to have zero thickness. The problem is

thus singular at z = 0, and consequently scalcd variables must be

introduccd in order to (numerically) solve the system (3.16) (3.19)

accurately. Spccifically we write

where

v3 ='v 3 (q,_),

T = "I"0],;),

= 2½ ,

and n = (r - 1 - _2)/_.

(3.20)

(3.21)

(3.22)

The quantities with a hat are then expected to behave regularly as

---, 0, and indeed approach the planar solution. Equations (3.16) -

(3.23)

(3.19) now take the following form

a

_p
= 0 , (3.24)

+ - r _ [ rT _-._], (3.25)

- a÷ @ v3 x; +Vl ___+ . _T

._2 (_,. 1)_2 + T (3.26)
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llcreof course

r = I + _2 + _q • (3.27)

The boundary conditions in tcrms of these variables are
A

vI = v3 = 0 on _ = 0

v 3 _ 1, T _ 1 as _ --_ = (3.28)

In the case of insulated walls, the additional surface condition is

= 0 on q = 0 , (3.29)

whilst for heated/cooled walls,

= Tw on _ = 0 (3.30)

Setting _ = 0 reduces the system to an ordinary differential system

(corresponding to the planar case) as in I in the same limit (indeed,

setting Z = 0 reduces (3.23) - (3.26) to the corresponding system

considered in I). The solution of the ordinary differential system at

= 0 then provides the initial conditions for a (straightforward)

Crank-Nicolson scheme in 4, identical to that used in I. For the

purposes of this paper, we shall focus our attention on the insulated wall

case (although the heatedlcooled case may be treated in exactly the same

manner). Distributions of wall temperature with axial coordinate 4(= 2J)

are shown in Fig. 2a (Me,= 2.8) and Fig. 2b (&_,= 3.8), and the
A

corresponding distributions of wall shear v3ql _ = 0 are shown in Fig. 3a

(,_. = 2.8) and Fig. 3b (M** = 3.8).

In all cases, these distributions are quite different to the

corresponding _ = 0 distributions (i e' the distributions on a straight

circular cylinder) as found in I, where at both M**= 2.8 and 3.8

a monotonic decrease in values was found. It is also quite clear that the

results evolve from the planar case, to the far downstream limit, as

predicted by the Mangler Transformation (Mangler 1946, Stewartson 1964),

namely
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--=) V'3-=v3_ ] = O, /; = 0_3n n = o, ; ---..

T u=O, ___.. n=O, g=O.

(3.31)

In the following section we go on to invesiigate the stability of

flows of this class, subject to small amplitude inviscid disturbances.

4, Inviscid stability of the flow

4,1 Disturbance equations

In this section we derive the disturbance equations relevant to small

amplitude disturbances in .8.11Xsupersonic axisymmetric boundary layer type

flow. In I, just axisymmetric disturbances were considered; here we

consider the more general case of non-axisymmetric perturbations of the

flow.

We consider disturbances whose wavelength in the axial direction

(1/_) is comparable to the (tip) radius of the cone. Specifically, at a

fixed _ station we write

v I = 8 a U,* _1 (r) E + 0(8 2 ) ,

v 2 = 8 U_* 32 (r) E + 0(8 2 ) ,

v3 = u.* [% (r) + 8 _3 (r) E] + 0(82i

T* = T.* [TO (r) + 8 _ (r) E] + 0(8 2) ,

where

and 8

p*= p*** [,i_.° 8_ (r)E] + 0(82)(r) +

p = p*** R* T*** [I + 5p (r) E] ÷ 0(8 2) , (4.1)

E : exp [i _ (z - ct) + in O] , (4.2)

is the scale of the disturbance (taken to be diminishingly small),
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whilst

t = (U.*/a*) t* ,

z = z*/a*

Wo(r) = v3 (r,_) ,

To(r) = T (r._) , (4.3)

A

where v3 and T are found from the computations in the previous section.

Substituting (4.1) into (2.1) (2.4) and taking the 0($) terms of

leading order in Re yields the following linear system

+ i Wop ;1TTo_ = 0 , (4.4)

ic ;3 + i _ + ;1 Wor_- i_
r-'o To TO - 7--_ '

- ic ;2 + i V/or_ - - inp

(4.5)

(4.6)

- i C¢2TOC;! + i a2 To_'°;1 = . _ , (4.7)

'I t- ic ? * iWO ? * ;1 T°r + (icp - iWoP) = 0 .

(4.8)

The perturbation equation of state is

= To p * _o " (4.9)

After some algebra, this system may be reduced to the following two

equations

1 _1 Wor -;It + 7 _) vl

[ °2]]_ ip To[ 1 + - M2==(Wo-C)2_(Wo-c) _ '

i_t2(Wo'C) ;l = I ..............

(4.10)

(4.11)
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a result also to bc found in the work on the stability of jets by Michalke

(1971). Writing

;1 = ;,, a = a/; , (4.12)

gives

l+_._2+_ri Wo-C

_ ip { To I1 + n2 _2y M2.(Wo.C) _2 (l+XG + ;,1)2 ] "

together with

(W°'c) Toq)= _. "
i¢ 2

These equations may be combined to eliminate to give

I_2(W°'c)2 } '

(4.13)

(4.14)

d

dq

(Wo-c) [ _ + ¢1 + x_2 ÷ ¢_ q' ] Wo,1?
i

n 2 42
T° [ 1 + ct2 (1+_._2 + _rl)2 ] M2.. (Wo-e) 2

a2
= T'6" (Wo'c) 9 ' (4.15)

Alternatively 9 may be eliminated to give

{ E  2n2 3}(Wo-C)2 M2,. - To 1 + ct2 (1 + _._2 + _)2

_(Wo.c ) } _ TO= W°_ " 1 + X_2 + _ a 2 (Wo-c)

d {T° Pn } (4.16)- (Wo-C) _ a 2 (Wo-c)

These equations reduce naturally to the system considered in I by

setring n = 0 (i.e. axisy_etric disturbances) and X = 0 (zero cone

angle).

The boundary conditions to be applied to the above systems are that
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q_=_ = 0 on rl = 0 ,

together with

9-½ 9- {Kn+ I (11) +Kln. 1 l (_)} ,

-:I: ¢p®M2- i ay (l-c) Kn (11)
[1 ._,2 (1.c)2]½ '

(4.17)

(4.18)

(4.19)

where _ = ± all-Me, 2 (1-c)2] ½ + X¢ + _} ; (4.20)

here the appropriate sign is chosen to ensure that the real part of n

is positive as n _ ", to ensure boundedness. Equations (4.15) together

with (4.17) and (4.18) (or (4.16) together with (4.17) and (4.19), or

(4.13), (4.14) together with (4.17), (4.18), (4.19)) constitute an

eigenvalue problem; here, we consider just the temporal problem, i.e. given

n and a (real), to find e (ge'nerally complex). The problem was treated

numerically using a Runge-Kutta method based on'(4.13) and (4.14), shooting

inwards from some suitably large value of _, with contour indenlation in

the manner described in I.

4.2 The._triply generalised inflexion condition"

In I, a condition for the existence of so called inviscid, neutral,

axisymmetric mode, i.e. those for which

1-11M_ < c < I + I/M,, (4.21)

implying disturbances that decay as _ _-, was derived. Here, we go on

to derive the corresponding condition for non-axisymmetric modes.

If we multiply (4.15) by _* (where an asterisk denotes a complex

conjugate), and subtract from the resulting equation its complex conjugate,

then the following equation is obtained



(Wo-C)
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!

v

I

d (W°'c*) (_* + "7 q_*)

Wo'C* _qq Z*

where we have written

{ .2 };(=To l+a- _
M2= (Wo-C)2 ,

and r = (I + _2 + _n)/_.

After some algebra, (4.22) can be written as

(4.22)

(4.23)

(4.24)

= r q)q)* _ zr

Writing c = c r + i c i ,

then the neutral state corresponds to

In this limit, (4.25) may be written

Ci ---, O.

(4.25)

(4.26)

d _ [_" [_ +_ +_-
X

= 2i r2 1912ci d { _lI1 }IWo-c 12 _ X r

Following the arguments used in I,

(4.27)

if the neutral bode is subsonic,

and satisfies the impermeability boundary condition on _ = 0, then to

avoid any contradiction the right-hand-side must be zero at the critical

point where Wo = c namely q = _i; this requires (recasting the equation

in terms of the original variables).
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d Wo-q

To [l+X_ 2 + _tl][l +

= 0 . (4.28)

= _i

This result represents a further generalisation of the so,called

"doubly generalised inflexion condition" (or a "triply generali,ed inflexion

condition"!); setting n = X = 0 in (4.28) retrieves the corresponding

result found in I. Note that in the general result for any shape of cone

surface described by

r = I + Xf(_) ,

merely requires the "X_ 2" in
P

I

5. Numerical Results

(4.28) to be replaced by

(4.29)

"x f(;)".

There are clearly many choices of parameters to be made in this study.

The strategy here will be to carry out a detailed study for one choice of

Prandtl number (0.72), ratio of specific heats (1.4), .cone angle (X = 1)

and Mach number (M,, = 3.8) for insulated wall conditions; results are

shown in Figs. 4-11. Results for c i are presented for a range of values

of n, at fixed values of _. Specifically results for _ = 0.01 (Fig. 4),

= 0.05 (Fig. 5), _ = 0.1 (Fig. 6), _ = 0.2 (Fig. 7), _ = I (Fig. 8),

= 5 (Fig. 9), _ = 20 (Fig. 10) and _ = 75 (Fig. 11). In these figures

we just concentrate on growing/neutral modes. All resulIs may be regarded

as being independent of numerical grid. In a number of cases the

distributions are shown on two figures - this is to increase the resolution

of certain features of the distribution in regions of small growth rates.
Z

In all these figures, the n = 0 results are delinerated by a solidus,

the n = 1 results by .... , n = 2 results by ..... ,

n = 3 results by m -- and n = 4 results by ........

Neutral points are also marked on the axes.

: _ : i Z-±L_ ±±L :z-
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The corresponding planar results arc shown in Mack (1965, 1987a) and

i; the important feature in this case is the existence of two primary

instability modes (and others, but of considerably smaller growth rate),

with the largest growth rate being associated with the so called "second

mode".

Figure 4 shows distributions at the location _ = 0.01, for

n = 0,1,2,3,4. The axisymmetric (n = 0) results are very similar to

Mack's planar results described above (and the axisymmetric results for

the circular cylinder case close to the leading edge, as considered in I).

The first mode extends from close to _ = 0 (where c r is approximately

l-l/M** up to a = 0.14 (terminating at a doubly generalised inflexion

point); we shall refer to modes of this general type as mode_ I. A second

mode originates at a = 0.24 (where c r = 1, and hence may be regarded as

a generalised inflexional neutral mode, with the critical layer occuring in

the freestream) and terminates at around a = 0.4 (which corresponds to

a second doubly generalised inflexional neutral mode); we refer to modes

of this general type as mode II.

In some ways the corresponding n = 1 results for c i (also shown in

Fig. 4) are very similar to the axisymmetric case. However a third mode is

seen to develop, not present in the corresponding axisymmetric (and indeed

planar) results. One important distinction'between the n = 0 results and

those for n = 0 emerges in the limit as _ _ 0, for which c i _ 0 if

n _ 0 (the limit as a-.--_ 0, _ = 0(1) is considered in Appendix A),

although of course the temporal growth/decay rate ac i is nonetheless zero

at a = 0. We shall refer to this additional mode as mode IA. As

increases, mode IA rapidly disappears, terminating at a supersonic neutral

point (i.e. where c r < 1-1/_). As a increases, a further neutral mode

soon emerges, at a second (supersonic) neutral point; this mode is of the

class I type described previously. Thereafter, as a is increased
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further, the n = 1 distribution closely resembles the n = 0 results.

The n = 2 distribution is qualitatively similar to those of n = 1;

however when n = 3. modes I A and I are seen to amalgamate, although

mode ]l remains quantitatively similar to the mode II results of the

previous n values. In the case of n = 4, mode l admits further

enhanced growth rates although it is still mode II that possesses the

largest growth rate (a ci).
i

It is not surprising that at _ = 0.01 results very similar to

corresponding planar results are obtained, since curvature, generally, will

play a minor role in the physics here; indeed a crude examination of (4.15)

suggests that as _ ---DO, the corresponding planar Rayleigh equation is

attained. However.as- ¢---J 0 and _ _ 0 a non-uniformity is present;

this aspect is taken up in some detail in the following section, where

further light is shed on the additional mode I A.

Figure 5 shows results for c i at _ = 0.05. The axisyrnmetric mode

exhibits the same general features as the corresponding mode shown on

Fig. 4, although both modes I and II have diminished growth rates. In

the case of n = 1, it is to be noted that mode IA has (already)

amalgamated with mode I, whilst mode II has significantly reduced
l

growth rates compared to the _ = 0.01 value, although this remains the

more dangerous mode. In the case of n = 2, the combined modes I and IA

exhibit,an enhanced growth rate when compared with the _ = 0.01 station,

whilst comparing corresponding mode lls, we note that the growth rate is

diminished; indeed, for n = 2, the maximum growth rate of the two modes is

comparable. In the case of n = 3_ the first mode again is more dangerous

compared to the corresponding mode at _ = 0.01, and this trend is repeated

by the n = 4 results, although this value of n indicates that an

increase in n is causing a decrease in growth rate.
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Figure 6 shows results at the _ = 0.10 location. These confirm the

trends observed previously, of a less unstable mode II, whilst the

(combined) mode I has a maximum growth rate comparable to mode II;

although it appears that the n = 0 mode lI remains the most unstable.

Figure 7a shows c i versus ¢ distribution at _ = 0.20. In this ease

mode II is barely visible, and so Fig. 7b shows these modes on a larger

scale. Interestingly, it seems to be the n = 2 mode I that exhibits the

largest growth rate and is consequently the most important.

Figure 8a shows c i distributions at _ = 1. Again, because of the very

small growth rates, mode II is shown on an enhanced scale in Fig. 8b.

Note that at this axial location th_ n = 0 and n = 4 (and above) cases

do not possess an unstable mode I at all (whilst the n = 4 mode II has

such small growth rates that it is not visible even on the scale of

Fig. 8b). Overall, it is the n = 1 mode I which is the most dangerous.

Moving further downstream to _ = 5 (Figs. 9a, 9b) we see a "recovery"

in the maximum growth rate of mode II. Indeed, these results 'show some
p

resemblance to the _ = 0.2 shown in Figs. 7a, 7b. This is not too

surprising, given that, on account of the Mangler transformation

(Mangler 1948, Stewartson 1964), results as _ -..-, = mirror those

as _ .--4 0 (except for a multiplicative factor of V"J-" in a).

This trend is confined in Fig. 10 for _ = 20, which may be

compared directly to the _ = 0.05 results of Fig. 5. Notice, in

particular, the re-emergence of mode IA for n = 1.

Figure 11 shows results at the furthest downstream location studied,

namely _ = 75. The n = 0 modes now correspond closely with the planar

results of Mack (1984, 1987a for example), (with the factor V'J'-

multiplying a), whilst mode IA is visible for n = 1 and 2, and the

union of modes IA and I is clearly seen in the case of n = 3.
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Thus to sun_narise, these results, which will guide us in certain

asymptotic aspects in the following section, wc observe the following

general features of the stability of the flow: (i) results as _ _-

mirror those as _ -.-o0, except for a multiplication factor of V¢"3"]",

(ii) Lateral curvature has a strongly stabilising influence on mode II,

together with the axisymmetric mode 1 (this is in accord with the results

found in I); (iii) there emerges a third mode, IA, as a---, O, with

•-.o 0 or _ ---,-, in the case of n _ O.

In the following section we go on to consider various asymptotic limits

of the system (4.15) (or (4.16)), guided partly by the observations made

above.

6. Asymptotic Results

In this section we consider a number of asymptotic limits of the

stability problem, to give us a better understanding of the details of the

numerical results described in the previous section.

Perhaps the most intriging feature of these numerical results is the

emergence of an additional mode as _ -.-, 0 (or _ ---+ -) with ¢.---_ O. We

investigate this feature first.

6.1 C---_ O. 0t=O(_) or _ .-_*-.

Since the problem as posed is basically equivalent as _ ---. 0 and

_**, we Consider just the former limit, and later we describe, briefly,

how the results for the latter limit can be simply inferred.

As noted in Section 5, as _ -_ O, (4.15) is seen to generally reduce
.................. . =_=_ _ •

to the planar system treated by Mack (1984, 1987a for example). However this

will no longer be the case if a = 0(_), since then the denominator on the

leftlhahd!sideo_(4115_ noqong:er_=reduce_ to the planar result .......

Specifically, let us write (consistent with (4.12))

a = _a , (6.1)
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where it is assumed _ = 0(1) as _ --_ 0. The results for mode I A

shown in the previous section, together with other results obtained by the

authors indicate that as _ _ 0, c --_ 0 also.

Partly guided by this, if q = 0(1) we set

c = _CI + _2c2 + _3c3 + , (6.2)

9 = 9o(q) + _91(Q) + _292(Q) + _393(Q) + .... (6.3)

Wo = Woo(H ) + _ WoI(Q ) + _2Wo2(Q ) + _3Wo3(_ ) + .... (6.4)

TO = Too(H) + _ ToI(Q) + _2To2(Q) + _3To3(Q) + ...

where Woo(Q) and Too(Q) represent the planar values of the velocity

and temperature profiles repectively, and WOI(Q) and T01(_) etc.

correspond to the porturbations to the basic flow caused through curvature.

To leading order, equation (4.15) reduces to

d

i.e. Woo 9oQ

Woo 9on - woon. 9o

Too [I + n2] - M.2 W2
OO

= 0 (6.6)
i

{[°2]WOOQ 90 = ko Too 1 + M,,2 Woo2 }, (6.7)

where ko is a constant. However we require that 9o(Q=O)= O,

90 is restricted not to grow exponentially as _ ---, _.

must have that

whilst

Consequently we

and hence

ko = 0 , (6.8)

9o = Ao Woo(q) , (6.9)

is an arbitrary constant (i.e. the unknown amplitude of thewhere Ao

eigensolution).

Equation (6.6) is not a uniformly valid approximation to (4.15), for all

_; specifically a breakdown occurs when Q = 0(4-1). We define

Q = 1 + _Q = 0(l) , (6.10)
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on this scale we expand q_ as follows

= ;o (n) + ; ;l ÷ ....

To leading order equation (4.15) reduces to
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rcpresents a scale comparable to the radius of the cone), and

(6.11)

d

1 + n 2 ]

= a2 _o • (6.12)

The solution to this, which matches on to (6.9) as q _ 1 is

¢o = A° Kn" [i a (M_ 2 1)½ q] , (6.13)
Kn" [i a (M**2 . 1)i]

where Kn(Zl) is the Bessel function of order n, argument z 1 (the

Kn (z 1) solution is chosen in preference to the lm (z 1) solution in

order that disturbances are propagated along characteristics in the

downstream direction - see Ward 1955, Kluwick et al 1984, Duck and Hall

1989a,b).

Returning now to the _ = 0(1) layer, the 0(;) correction to 9

given by

is

d

drl

Wol Yon Cl _o_ + Woo ¢1_ + Woo _o - Woo_ 91 - Woln 9o

Too [1 + n 2] ,V_2 Woo2

(6.14)

and so integrating this equation once we obtain

Wol 9oq cI9o_ + Woo 91q + Woo 9o " Woo_ 91 " WoI_ _o

= kl { Too [1 + n2] M**2Woo2 } , (6.15)

where k 1 is an arbitrary constant, q_l must not be exponentially

large as _1 _ **, and consequently we must have

=0,



23

+Ao =kl {
1 (6.16)

together with

- Cl Ao Wooq(H = O) = kl Too(O) {l + n2} (6.17)

However in order to match correctly with (6.13)

= 1 (6.18)
= AO i0. (Mo,2- 1) ½ Kn'" [i0. (M**2 - 1) ½]

Kn" _[ia (M=,2 - l)J]

Eliminating kI, we obtain the following result for cI

el=

/
{i0. (M=2 - 1) ½1 /Ka-"

Kn'.[i0. (t,_ 2 - 1)t1 !

To O.(13=0) { 1 + 0.2n2 }

Wooq (rl=0) [M**2 - 1 n2]

(6.19)

The asymptotic forms for this expression in the limit of large and small

0. may be found readily. Firstly as 0.----_ = we have

-i0. TOO (_=0) 1
cI _ + 0(0." ) (6.20)

Woo_ (_=0)(M=2 - i)½

Secondly as 0.---_ 0

n Too (_=0) + 0(0. 2 ) for n¢l (6.21a)
c1 _ "Woon (_=0)

n Too (_=0) + 0 (_2 log0.) for n=l. (6.21b)
Cl _ Wooq (q=0)

In fact it is quite easy to show that as a _ 0,

0.2n (,_,,2- 1) n Too (0) 22"2n
Im {cl} .--, (6.21c)

Woo_ (0) . [(n-l)[]2

Equations (6.21) are precisely the (real) values found by Duck and Hall

(1989b) for the downstream limit of a non-axisymmetric viscous mode
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(taking into account the different scalings used in Duck and Hall's paper).

Consequently we expect that as 4 ---, 0/-, on a scale smaller/larger than

that of the cone radius, we expect this mode to become predominantly viscous

in nature, and to be described by triple-deck theory.

Distributions of lm{Cl} with _ are shown in Fig. 12 for n = 1,2,3

(with (6.20) also shown). Unfortunately (perhaps) it is seen that

Im{Cl} < 0 for all • (confirmed by (6.20)). From (6.21) we also have

that lm{el} = 0(4) as 4 "4 0. Unfortunately, als0_ the 0(42 ) and higher

correction to this mode would require a large amount of algebra. However we

are able to make progress, in particular obtain an estimate for

Im{c (_ = 0)] by considering instead the limit as _ -.-, 0 of equation

(A.2), pertainent to the a---, 0 case. (With

aspect in the following subsection).

Finally, for this subsection, note that the

a = o(_) "we consider this

4 "--* - results may be

simply inferred from these 4 ---* 0 results, simply be replacing the small

parameter '_' in the various expansions by the small parameter 'I/Z_'.

More subtle differences between the _ < < 1 and 4 > > 1 solutions only

appear at higher orders.

6.2 _ = O. _ _ 0 (or E ---.-_=_

The system (A.2) turns out to be rather easier to analyse as _ ---, 0

than does the corresponding finite _ (= a4 "l) problem. We again utilise

expansions (6.2) (6.5) (although see (6.48) for the _ expansion).

To leading order, we have for _ = 0(1) that

_o = Ao Woo(H) , (6.22)

where Ao is some (arbitrary) amplitude parameter.

At the next order we have the following system

Woo _I_ " Ao Wooq Cl + Ao Woo2

:Woo_ _1 + Ao _ol Wooq " ao Woi_ Woo.= kl Too , (6.23)
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where k I is a constant, and we have utilised (6.22). Setting n = 0 in

(6.23), assuming 91in= o = 0 , then

-Ao c 1Woo_(_=0) = k I Too (_=0) (6.24)

The boundary conditions as n "--)= must be compatible with (A.3), together

with (6.22). Defining

T = 1 + q/_ = 0(1) , (6.25)

then we must have an outer solution of the form

9_ ut = A t "n'l , (6.26a)

where A = Ao + 1 + ..... (6.26b)

and so we must also have

I °°'i91_ _ _._ _ = 9or r = 1 = -(n+l)A o . (6.27)

Substituting this into (6.23) yields

Cl n TOO (_ = O) (6.28)
Wooq (_ O) '

in accord with (6.21). In order to estimate complex values of c we must

proceed to higher orders in _.

At the next order in _ we obtain the following equation governing 92:

Woo 92q + 2_ Woo 9o_ + 2n Woo 91_ + Wo2 9oq

"Wo2_ 9o + Wol 91n + _2 Wo° 9o_ " Cl 91n

+2Wol _ 9o_ + Wol 9o " Wol_ 91 2_ Wol_ 90

-2_ cI 9o_ - c2 9o_ + Woo 91 + _ Woo _o

"Cl 90 " Woo_ 92 - 2k Wooq 90

._2 Wooq 90 = k2 Too + n2 Too

+ kI Tol

2q 91Woon

_9o Woo dn
O

(6.29)

We shall defer any consideration of this equation, and move to the next

order of _, which yields
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Woo 93q + 2 kWoo 91n + 2 _Woo 92q + 2 kq Woo 9oq

+ n2 Woo 91n - Cl 92_ " 2ZCl 9oq " 2_ c I 91q

. _2 Cl 9o_ c2 91_ " 2_ c2 9oq " c3 9oq

+ Woo 92 + _ Woo 9o + q Woo 91 " Cl 91

" Cl _ _o " c2 90 " Woo_ 93 2 X Woo q 91

. _2 Wol_ _o " 2_ 92 Woo_ " _2 Woo_ 91

+ Wol _2_ + 2_ Wol _oq + 2_ Wol _I_

+ _2 Wo I 9oq + Wo2 91_ + 2_ Wo2 _o_

+ Wo3 _oq + Wol 91 + Wol _ _o + Wo2 _o

" Wo3_ _o " 2n Wo2_ _o " 2X Wol q _o

- 2X_ Woo q _o " Wo2_ _I 2q Wol _ 91

" Wol_ _2 = k2 Tol + kl To2 + k3 Too

[91Too " 9o Tol] Woo " Cl Too 9o + Wol 9o Too

+ n2 Too 2 d_
Too

O

i _o Woo dq (6.30)+ n 2 Tol To o

Our main goal here is now to determine the leading order imaginary

component of the complex wavespeed c (we do, of course, already know the

leading order real term). Now since the above equations just contain real

:=::= : : ycoefficients, any imaginaries must, of necessit , only arise at a critical

point, where, c = Woo. Since c = 0(4), this must occur when _ = 0(4).

We therefore consider a thin layer relative to the _ = 0(1) scale, namely

= _i_ = o(i)

On this scale, the expansion for

(6.31)

is expected to develop as

q0 = 4¢ 0 (q) + 42 ¢1 (fl) + 43 ¢2 (q) + ..... (6.32)
2 ....

where the ¢i are expected to be normal!sed in such a way as to be

generally 0(1) quantities.



27

It is easy [o show that

%(_) = A0 Wooq (_=0) (6.33)

(where Ao was introduced in (6.22)), and also

*l O1) = A] Wootl (11=O) _ , (6.34)

where A 1 is a constant, linearly related to Ao, and we have used the

property that Wooq_ (_=0) = 0).

After some algebra, the equation for '2(_)

where he re

'2_ " Woon (0) *2

may be written

[Woon (o) _ - cl]

_3

= + ClAoWoon(O1+ n AoWoo nn (0)%%(0)

[Woon (o)12 Ao _2

_2
Woon (0) Toonn (0) cI Ao

2 Too (0)

k2 is an (arbitrary) constant.

If we take (as we are quite at liberty Io do) Ao and

(6.35)

k2 to be real

constants (this is not essential for our arguments, but simplifies the

following argument), then we now consider just ,2 i (where here and

elsewhere a superscript i denotes an imaginary component). This quantity

is triggered by the well known + i _ jump in the logarithm (Mack, 1984 for

example) across the critical layer. Specifically, here, this is caused by

the _ dependancy on the right-hand-side of equation (6.35) (k 2 plays no

role in this). If (6.35) is written symbolically as

then

A

[Woorl(0) _ - cI] '2_ " Wootl (0) '2 = R . (6.36)

R d_

*2 = [Wool](.0)_ - ell [Wootl(0) _ . ell2 . (6.37)

0

Evaluating this integral, taking just the imaginaries together with the

limit as _ _ - yields
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i t¢2 - _ ko [Wooq (0) il-cl]cI Wooq(0)
+c I

Woo_qq(O)

[Woon(o)]3

Tooqq(0) Cl ]Too(0) [Wooq(O)] 2

= B m [Woorl(O)q - el] , (6.38)

I I - WOOnnn(O)_
+ Cl

whore Bi r,_Ao c I Wooq (0) [Wooq(O)]3

Tooqq (0) cI 1

Too (0) [WOOn (0)2 2 l (6.39)

Equation (6.38) then provides the lower boundary conditions for the system

(6.29) and (6.30).

Since (6.29) contains just real coefficients (and taking c2 to be

real, an assumption that may be justified a posteriori), then we must have

where B i

i = B i
92 Woo (q) '

is defined in (6.39).

(6.40)

If we take the imaginary part of (6.30) and allow _ _ -, then

and so

q_qa TI_ - q _ =

However we require (on account of (k.3)) that

i[ - -(n+l)qo2i [

i
~ - (n+l) B

i i
k 3 = -nB

(6.41)

(6.41)

(6.42)

Setting q = 0 in (6.30) yields

"Cl 92q I [q = 0 " c31 Ao Wooq (0)

= .nB 1 Too(0 )

i
W°°q (0) _3 ]q = 0

(6.43)
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Ilowevcr from (6.38) we have

i] = Bi_2_ _ = 0 Wooq (0) '
(6.44)

_3ilq = 0 = Cl Bi

Consequently, (after substituting for el),

i 2 Too(0)2_ [ I n Too(0) Wooqrlq(0)

C3 = n l + ""[Woon(O)]2 Woo.n(o) [%o,n]4

(6.45)

[Woon(O)]

Using the governing equations for the basic flow allows this expression to

be simplified slightly, to

i n2 Too(0)2 _ [

c3 = 1 1 + 20 M=2(T-1)n (6.47)[Woo CO)]3

In fact the expansion for _ in (6.5) is not quite complete as it

stands, since the analysis of the _ = 0(1) layer above indicates the

presence-of loga.rithmic terms; specifically we require

= _o(_) + _1(_) + _2_2i_) + ;393(_) +'"

+ log _ [ ;2 _21 (_) + 43 _31 (q) +.." ] , (6.48)

where _21(_) = A21 Woo(h) , (6.49)

with A21 a constant.

A comparison of the fully numerical computation of Real { c Ca = O) } ,

with the asymptotic formula (6.28), as ; ---, 0 is shown in Fig. 13. The

agreement is seen to be entirely satisfactory. Unfortunately the

between the computed lm { c (a = O) } and that obtainedcorrelation

using (6.47) is much less satisfactory. However, this poor correlation

is not unexpected for two reasons. Firstly accurate computations of

Im { c } in this limit become exceedingly difficult, as confirmed by the

quite complex asymptotic structure detailed above, with both thin

(6.46)
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(_ = 0 (_)) and thick (n = 0 (1/_)) lengthscales emerging.

Secondly the asymptotic form for lm { c I } is achieved very slowly as

_ O, at least in one particular configuration, where, with n = 1, the

imaginary wavespeed has a leading order coefficient of approximately

3.898 x t05 _3. A comparison between the numerical and asymptotic results

is not shown in this case.

In the case of _ _ -, we may just replace the small parameter '_'

in the above, by the small parameter 'I/X_'. In the following subsection,

we consider the behaviour of mode I, as _ _ O.

6.3 __---_01 ct=0(__t_

The numerical results presented in the previous section strongly

suggest that for the most part, as _ _ 0 mode I has features very

similar to the planar case, for all values of n. However there is one

important exception to this, namely the behaviour of the lower neutral point

in this limit. The planar case has that c --_ 1 l/M** as a _ 0,

corresponding to the so-called "sonic" mode. However in the case of our

numerical results, there is evidence of a shift in this neutral point,

along the positive real axis, and the neutral point becomes (slightly)

supersonic, with c < 1 l/M**, as _ _ 0.

A (sensible) balancing of terms suggests that we might look for a

solution of the form

C = Co + el +.. "

= % + r_q_1 +...

Wo = Woo + _ Wol +...

TO = Too + _ Tol +... (6.50)

with

ct = 4 ½ ct, ct = 0(1). (6.51)
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e

To leading order, (4.15) yields

d { (w°° " c°) q)°rl " w°q q_°}Xo = 0
(6.52)

where

x o = Too - M=2 (Woo - Co)2 (6.53)

The solution to (6.52) which satisfies the impermeability condition on

= 0 is

A _ TO9o = Ko (Woo - Co) 2dq , (6.53)
(Woo-Co)

o
M

where Ko is some arbitrary constant, and the integral is to be taken

underneath the critical point.

Since we require that 9o _ constant as

with (4.18)) we must have that

co = 1 ± ILK,, ,

in order that the integral (6.53) remains bounded as _ ....4-.

rI _ _, (in order to match

(6.54)

Further, we

take the negative sign to be consistent with the numerical results and

or comments above; indeed, this is simply a repeat of the planar calculation

(Lees and Lin 1946).

Curvature plays an important role at next order, namely 0(_). The

governing equation in this case is

0{1E " l_'_ _oo (W°° " c°)(q)lll+ q)o)" Cl _°oq " Wool]q_l+ Wol q)01]" Wolq q_o

Xo---'-_1 [ (Woo - Co) q)orl Woorl q)o ][ n2 TL_a + Tol

+ 2M,,2 (Woo - Co) Cl - 2._,,2 (Woo - CO)WOi

dr2 (Woo "Co) q)c_ (6.55)
= TO O

Consequently, using (6.53),
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A M

(Woo Co) ((Pl-q+ %) el q)orl" WOOTIq)l Woln q)o

2M,.,2 (Woo - Co) Wol ]

(Woo
= K1 Xo + a2 _o /

J

0

whcrc K1 is a constant.

• Co) _o

Too
dq, (6.56)

In order to match correctly at the outer edge

we must have that

A *l ,_

71o Kn (_o) Ko II
_l_l'q ---_ _ -

Kn (%) M.I

where

I = . dTl ,
(Woo - C0)2

(6.58)

and no = M_,½ ct (2Cl) ½ (6.59)

Taking the 0(I) terms of (6.56) as _ _ - and using (6.57) yields

the following non-linear dispersion relationship for el:
J

"qo + 1 = T _ + 2Mooc 1 (6.60)

• The integral (6.58) was evaluated numerically, and for the conditions

prevailing in all our numerical results it was found I = -228.4-59.3i.

Equation (6.60) was solved using Newton iteration, and results for

Real [c 1 _ and Im _fc 1 _ fo, various n are shown in Figs. 13a and 13b
t J t /

respectively.

Notice that as a _ -, (6.60) predicts that one family of solutions

has the property that

2 ' (6.61)

=

7
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which is in agreement with the a << 1

case, namely

c = I-I/M_ + a 2 12
-----r- + 0(a 4) •

expansion for c for the planar

(6.62)

Equation (6,61) is shown as an asymptotic on Figs. 14a and 14b. Note

that the (real) family of c I which also exist may be found as an exact

solution to (6.60), namely

el = n 2 (6.63)
2 M. _2 '

although the importance of this mode is not thought to be great. The

complex families of Cl'S are seen to terminate at a finite value of a,

corresponding to the (lower) neutral point of mode I. Notice that in all

cases because Real { el } < 0 at the termination point, these modes
!

correspond to supersonic neutral modes.

From the result shown in Fig. 14b, we are therefore able to offer an

estimate for the position of the lower neutral point of mode I as _ _ 0.

In particular, for the freestream conditions considered throughout this

paper, for n = 0 this position is given by a.= 0.1 _t, for n = 1 by

a = 0.20 _½, and for, n = 2 by a = 0.295 _i. Comparing these asymptotic

results with figure 4 in particular reveals a fair degree of agreement.

In the case of _ >> 1, the above results may be easily transposed,

by the replacement of '_' by 'l/k_'; the corresponding positions for

lower neutral point are then a = 0.1 (k_)'½ for n = 0,

= 0.20 (k_) "½ for n = 1, and a : 0,295 (k_) "½ for n = 2. These

results are seen to agree quite well with the _ = 75 results shown in

Fig. 11.
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7. Conclusions

In this paper we have studied the supersonic boundary layer flow, and

the inviscid stability thereof, over a sharp cone with adiabatic wall

conditions. The basic flow is seen to evolve from one planar state, to a

second, as predicted by the Mangler (1946) Transform.

The "triply generalised inflcxion condition" is derived, this being the

necessary condition for subsonic ncutral modes, and is a (second)

generalisation of the well known generalised inflexion condition.
=

Significantly, the numerical results point to the occurenc¢ of a third

mode of instability, not found in similar planar and (more recently)
2

axisymmetric studies. An asymptotic study of this mode shows this mode to

be linked to a viscous mode found by Duck and Hall (1989b), a study based on

triple-deck-theory.

The "sonic" neutral mode is found to be altered by curvature (and in

fact becomes a supersonic neutral mode as revealed by the asymptotic

analysis valid as _ _ 0 and _ _ -.)

Significantly, our results show that the so called second mode (mode II)

is not always the most unstable, at least in the ease of non-axisymmetric

modes.
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Appendix A 'rh¢ zero ngmber limi|

In the case of axisymmetric modes (and indeed of planar modes, as

considered by Lees and Lin 1946, Mack 1965a, b, 1984, 1987 for example),

as a----,O_ the wavespeed c approaches the sonic limit, i.e.

C ---4 1 ± I/M=. (A.I)

In the case of non-axisymmetric modes, however, this is no longer the case.

As clearly illustrated in the results, when n _ O, c i -/-, 0 as a--¢ O.

The explanation is as follows.

If we (simply) allow a _ 0 (assuming n ¢ 0), then (4.15) reduces

tO

As rl ----¢**,

d [ (Wo-C) El+_._2 + _rl] ['(l+X_ 2 + _TI) q_ + _q)]

[dq TO

W°q[I+X;2To * ;rt]29]

- n2 42 ? (We-c) (A.2)
To

this system clearly admits solutions of the form

-n-1
q_- rI fa.3)

(together with 9 = 0 on _ = 0). which is completely compatible with
.A A

the outer solution, where _ = 0il), (_ defined by (4.19)) namely (4.18).

Equation (A.2) then represents a reduced problem as a---,0, and indeed

a reduced form of the triply generalised inflexion point condition (4.28)

exists in this limit, namely

d f WO_ (1+_2 "1" ;_)2ITO _-- 0

(A.4)

The system (A.2) (A.3) was solved in a number of cases (in an

identical manner to the a = 0(1) eigenvalue system) and its correctness

was confirmed. Notice, however, since the actual temporal growth rate is

ac i, then this still reduces to zero as a---, 0.
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